Differential expression of metabolic genes essential for glucose and lipid metabolism in skeletal muscle from spinal cord injured subjects.

نویسندگان

  • Yun Chau Long
  • Emil Kostovski
  • Hanneke Boon
  • Nils Hjeltnes
  • Anna Krook
  • Ulrika Widegren
چکیده

Skeletal muscle plays an important role in the regulation of energy homeostasis; therefore, the ability of skeletal muscle to adapt and alter metabolic gene expression in response to changes in physiological demands is critical for energy balance. Individuals with cervical spinal cord lesions are characterized by tetraplegia, impaired thermoregulation, and altered skeletal muscle morphology. We characterized skeletal muscle metabolic gene expression patterns, as well as protein content, in these individuals to assess the impact of spinal cord injury on critical determinants of skeletal muscle metabolism. Our results demonstrate that mRNA levels and protein expression of skeletal muscle genes essential for glucose storage are reduced, whereas expression of glycolytic genes is reciprocally increased in individuals with spinal cord injury. Furthermore, expression of genes essential for lipid oxidation is coordinately reduced in spinal cord injured subjects, consistent with a marked reduction of mitochondrial proteins. Thus spinal cord injury resulted in a profound and tightly coordinated change in skeletal muscle metabolic gene expression program that is associated with the aberrant metabolic features of the tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF AEROBIC TRAINING AND ETHANOL CONSUMPTION ON LIPID PROFILE AND GENE EXPRESSION OF SOME GASTROCNEMIUS MUSCLE MYOKINES IN MALE RATS

Background: Skeletal muscle as an endocrine tissue is involved in the regulation of metabolic activity, production and secretion of hormones including myokines. The aim of the present study was to investigate the effect of eight weeks of aerobic training combined with ethanol consumption on plasma lipid profile and glucose levels, triglyceride content and mayonectin, irisin and leptin gene expr...

متن کامل

Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects.

AMP-activated protein kinase (AMPK) is a pivotal regulator of energy homeostasis. Although downstream targets of AMPK are widely characterized, the physiological factors governing isoform expression of this protein kinase are largely unknown. Nerve/contractile activity has a major impact on the metabolic phenotype of skeletal muscle, therefore likely to influence AMPK isoform expression. Spinal...

متن کامل

The Effects of Pyruvate Dehydrogenase Kinase 4 (PDK4) Inhibition on Metabolic Flexibility during Endurance Training in Skeletal Muscles of Streptozotocin-induced Diabetic Rats

Background:Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. Pyruvate Dehydrogenase Kinase 4 (PDK4) is one of the main enzymes that play a critical role in metabolic flexibility. In current study, we examined PDK4 inhibition along with exercise training (ET) on the gene expression of Es...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 110 5  شماره 

صفحات  -

تاریخ انتشار 2011